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One-, Two-, and Three-Dimensional Ising Model in
the Static Fluctuation Approximation
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Viewed as a prototype for strongly interacting many-body systems, the spin-1/2
n-dimensional Ising model (n 5 1, 2, 3) is studied within the so-called static
fluctuation approximation (SFA). The underlying physical picture is that the local
field operator sz

f with quadratic fluctuations is replaced with its mean value
[(sz

f)2 > ^(sz
f)2&]. This means that the true quantum mechanical spectrum of the

operator sz
f is replaced with a distribution; along with the calculation of its mean

value, we take into account self-consistently the moments of this distribution. It
is shown that this sole approximation is sufficient for deducing the equilibrium
correlation functions and the main thermodynamic characteristics of the system.
Special new features of this study include an analysis of the two-dimensional
model without periodic boundary conditions, and the demonstration that the
phase-transition scenario is quite sensitive to the boundary conditions in the two-
and three-dimensional cases. In passing, new boundary problems in mathematical
physics are emphasized.

1. INTRODUCTION

The spin-1/2, or two-state, Ising model was introduced in 1925 (Brush,
1967). Since then it has been one of the most thoroughly studied models in
statistical mechanics and many-body theory. This is not surprising in view
of its relative simplicity, which has led to rigorous solutions for both one-
dimensional and certain two-dimensional lattices, as well as its broad range
of applicability to real physical systems (Honmura and Kaneyoshi, 1979;
Taggart and Fittipaldi, 1982). In addition, it has been treated as a “laboratory”
for testing a variety of theories and techniques. Recently (Bune et al., 1998)
it has even been invoked for modeling ferroelectricity in two-dimensional
polymer films.
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It is its appeal as a prototype for strongly interacting many-body systems
that has motivated the present paper. The main objective is to develop a new
general approach for many-body systems which is simple, transparent, and
avoids the complications and shakey approximations of conventional many-
body theories, especially of the perturbative variety—diagrammatic tech-
niques, Green’s functions, the heavy reliance on an expansion parameter that
is not really small, and so forth (Abrikosov et al., 1965; Fetter and Walecka,
1971). The spin-l/2 Ising model in an arbitrary integral dimension will be
regarded as a mere application of this approach; other applications for Fermi
and Bose systems with strong interparticle correlations and arbitrary interac-
tion will follow in subsequent papers. [A preliminary study of electronic
correlations within this approach has, in fact, already been carried out (Losku-
tov et al., 1996)].

Earlier versions of our approach, which has been called the static fluctua-
tion approximation (SFA) for reasons that will become apparent shortly, have
already been presented in a series of papers (Nigmatullin and Toboev, 1986,
1988, 1989). The key physical idea lies in the optimal, and (from our point
of view) physically obvious, modification of the mean-field approximation
in that the operator of quadratic fluctuations, which can have either a scalar
or a vector nature, is replaced with its mean value. It turns out that this
sole approximation is sufficient for calculating the equilibrium correlation
functions as well as all principal characteristics of the system. To this end it
is necessary to obtain the linearized, self-consistent (difference) long-range
equation ([D]LRE) [an exact [D]LRE was obtained for the first time for
the one-dimensional Ising model by Jelifonov (1971) for the corresponding
Hamiltonian], the qualifier ‘difference’ being applicable to lattice systems.

Among the highlights of the present study of the spin-1/2 Ising model
within the framework of the SFA are (i) an analysis of the two-dimensional
model without periodic boundary conditions, (ii) the identification of SFA
solutions with new boundary problems in mathematical physics, and (iii) the
demonstration that the phase-transition scenario is quite sensitive to the
boundary conditions in the two- and three-dimensional cases. This fact was
first discovered and discussed by Jelifonov (1971).

It should be emphasized right at the outset that the present approach is
not just one version of a mean-field theory; the SFA goes beyond the mean-
field approximation (MFA) and its known modifications. In particular, in the
MFA, it is impossible to calculate the equilibrium correlation functions of
the system with an arbitrary interaction and in an arbitrary geometrical
configuration. In the SFA, however, knowing the DLRE, it will be shown
how to obtain these functions to any order for any integral dimension and
for boundary conditions other than periodic conditions which are common-
place in statistical mechanics.
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The synopsis of the rest of the paper is as follows: In Section 2 the
linearized DLREs for the spin-1/2 Ising model of an arbitrary integral dimen-
sion are derived. This is followed, in Section 3, by an analysis of the one-
dimensional model; comparison with exact solutions (Jelifonov, 1971) is
meticulously made. Next, in Section 4, the two-dimensional model is studied;
the thermodynamic properties of an infinite plane are determined. Section 5
is devoted to the three-dimensional model, complete with the effects of
boundary conditions. The paper closes, in Section 6, with general conclusions.

2. THE LINEARIZED DIFFERENCE LONG-RANGE
EQUATIONS FOR THE ISING MODEL (S 5 1/2)

We start with a system of spins localized at the nodes of a lattice and
related to each other by an overall attractive potential, U( f 2 f 8) , 0. The
Hamiltonian of the system is in the form

H 5 2v0 o
f

Sz
f 2

1
2 o

f,f8
U( f 2 f 8)Sz

fSz
f 8 5 2o

f
Sz

fsz
f (1)

Here U( f 2 f 8) [ Uff 8 5 UF(.rf 2 rf 8./a) is positive-definite (the minus
sign being explicitly shown in the Hamiltonian), a is the lattice constant, and

sf [ v0 1 o
f 8

Uff 8Sz
f 8 (2)

is the operator of the total local field acting on the spin localized in the node
f. We write down the Heisenberg equations of motion (" [ 1):

dSx
f

dt
5 i[H, Sx

f ] 5 sz
f Sy

f (3a)

dSy
f

dt
5 i[H, Sy

f ] 5 2sz
f Sx

f (3b)

The principal approximation on which our whole approach is based is that
the square of the operator of the total local field, defined by expression (2),
is replaced with its average value:

(sz
f)2 > ^(sz

f)2& (4)

The physical meaning of this approximation is the following. The true quan-
tum mechanical spectrum of the operator sz

f is replaced with a distribution;
along with the calculation of its mean value (MFA), we take into account
the moments of this distribution (SFA). As a first step we shall calculate here
self-consistently the quadratic fluctuations of sz

f which lead to the approximate
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but linearized DLRE, which, in turn, can be solved by well-known mathemati-
cal methods.

Based on the definition of the Euclidean norm of an operator,

|A| 5 [Tr(AA+)]1/2 (5)

together with the Cauchy–Schwarz inequality, one can show that the Euclid-
ean norm of the difference,

|(sz
f)2 2 ^(sz

f)2&| # o
f 8,f 9

Uff 8Uff 9ZS(S 1 1)
3

2 ^Sz
f 8Sz

f 9&Z (6)

is bounded at all temperatures and can be estimated for any given S and Uff 8.
The substitution of the operator of the total local field by its average

value allows us to extend the range of validity of the SFA and obtain the
DLREs for a wide class of Hamiltonians. This supersedes the approximation
used in previous papers (Nigmatullin and Toboev, 1986, 1988, 1989), where,
from the operator of the total local field, its mean value was subtracted and
then the remaining operator of relative quadratic fluctuations was substituted
by its average value:

(Dsz
f)2 > ^(Dsz

f)2& (7)

Here Dsz
f [ (f 8 Uff 8 DSz

f 8, and DSz
f [ Sz

f 2 ^Sz
f& is the operator of relative spin

deviations of the node f.
With approximation (4), the equations of motion (3) assume a closed

form. The solutions can be written down at once:

Sx
f (t) 5 cos(Vf t) Sx

f (0) 1
sin(Vf t)

Vf
sz

fSy
f (0) (8a)

Sy
f (t) 5 cos(Vf t) Sy

f (0) 2
sin(Vf t)

Vf
sz

fSx
f (0) (8b)

Here Vf [ !^(sz
f)2& is the frequency of the total field, together with its

quadratic fluctuations. The required mean values are found in accordance
with the formula

^B(2ib)C & 5 ^CB& (9)

The notation ^???& [ Tr[exp(2 bH ). . .]/Q denotes the averaging procedure
over the canonical ensemble: Q is the partition function, b [ 1/T is the
inverse temperature (Boltzmann’s constant kB being set to unity), and B and
C are arbitrary operators. Putting B [ Sx

f and C [ Sx
f A, with A being a set

of spin operators except for the node f, we obtain the equation (or equations
for other cases) relating the spin of the node f with all other spins via U( f 2 f 8).
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For the one-dimensional Ising model such equations have been called
the difference long-range equations (DLREs) (Jelifonov, 1971); the exact
solution for this model has been obtained for various boundary conditions.
In this paper we shall retain this abbreviation. Simple manipulations lead to
the following linearized DLRE in the SFA:

^Sz
f A& 5 hf ^sz

f A& (10a)

where

h f [
1

2Vf
tanh1bVf

2 2 (10b)

The DLRE allows one to obtain closed equations for all microscopic values
and to calculate completely the thermodynamics of the system considered.

We show here how to close the system of equations for the ferromagnetic
Ising lattice of an arbitrary integral dimension.

If the lattice is regular and has translational symmetry, then Vf does not
depend on the index of the node f. Putting A 5 1 in DLRE (10a), we have

^Sz
f& 5 h^sz

f& 5 h1v0 1 o
f 8

Uff 8^Sz
f 8&2 (11)

We are interested in the homogeneous solutions of this equation. With
the notation

^Sz
f& [ m/2; p [ h o

f 8
Uff 8 5 hU(0) 5 hUF(0) (12)

U(0) being the zero Fourier component of the interaction, we can write (11)
in the form

m(1 2 p) 5 2pv0 /U(0) (13)

Using the operators of spin deviations DSz
f [ Sz

f 2 ^Sz
f& and subtracting Eq.

(11) from (10a), we can rewrite the DLRE in the form

^DSz
f A& 5 h^Dsz

f A& (14)

where Dsz
f [ (f 8 Uff 8DSz

f 8. From (14) we obtain the equations for the pair
correlation function. For this purpose, we put A [ DSz

f 8 in (14):

^DSz
f DSz

f 8&c 5 h o
f 9

U( f 2 f 9)^DSz
f DSz

f 8&

5 hU( f 2 f 8)^(DSz
f 8)2& 1 h o

f 9
U( f 2 f 9)^DSz

f DSz
f 9&c (15)

The index c in the correlation function means that all pair correlations are
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taken into account except the case when f 5 f 8. To find the pair correlation
function from (15), we assume the validity of cyclic boundary conditions.
In this case we use the Fourier transforms in accordance with

^DSz
f DSz

f 8&c 5
1
N o

k
K(k) exp(ik ? rff 8) (16a)

U( f 2 f 8) 5
1
N o

k
U(k) exp(ik ? rff 8) (16b)

Invoking orthogonality,

o
q

exp(iq ? rff 8) 5 Ndff 8; o
f

exp[irf (k 2 k8)] 5 ND(k 2 k8) (17)

we obtain

K(k) 5 ^(DSz)2&
hU(k)

1 2 hU(k)
5 ^(DSz)2&1 1

1 2 hU(k)
2 12 (18a)

The pair correlation function is found from (16a) and (18a):

^DSz
f DSz

f 8&c 5
^(DSz)2&

N o
k

[(1 2 hU(k))21 2 1] exp(ik ? rff 8)

5
^(DSz)2&

N o
k

exp(ik ? rff 8)

1 2 pU(k)/U(0)
(18b)

We now show how to close the set of equations and obtain the self-
consistent equation for an unknown value h as well as the necessary formulas
for investigating the Ising model of an arbitrary integral dimension.

From Eq. (13) it follows that, at v0 → 0, p 5 1 is a singular point.
At p 5 1, m Þ 0; then this relation defines the equation for spontaneous
magnetization. If v0 Þ 0, the equation for the magnetization m, which follows
from (13), has the form

m 5
2p

1 2 p 1 v0

U(0)2 (19)

This observation shows that one can choose the variable p as an independent
parameter determined by (12). Its values lie in the interval 0 # p # pup,
where pup (#1) is determined, in turn, from the condition m 5 1 and is given
by pup 5 1/[1 1 2v0/U(0)]. The value p 5 1 defines a possible phase
transition for the spontaneous magnetization.

In order to obtain the self-consistent equation for magnetization, we
transform the expression for Vf [ !^(sz

f)2& [ V:
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V 5 !^sz
f&2 1 ^(Dsz

f)2& (20)

The values ^sz
f& and Dsz

f are defined according to (11) and (14). Let us rewrite
the expression for the square fluctuations of the mean field ^(Dsz

f)2& in the
k-representation:

^(Dsz
f)2& 5 o

f 8,f 9
U( f 2 f 8)U( f 2 f 9)[^DSz

f 8 DSz
f 9&c 1 ^(DSz)2&df 8f 9] (21)

Incorporating the expressions (16) and (18), we get

^(Dsz
f)2& 5

^(DSz)2&
N o

k

U(k)U(2k)
1 2 pU(k)/U(0)

5 ^(DSz)2&
U 2(0)

p2 [G( p) 2 1] (22)

In expression (22)

G( p) [
1
N o

k

1
1 2 pU(k)/U(0)

(23)

is the lattice Green function, which depends on both the dimension of the
system and the form of the interaction. Taking into account the definition of
potential Uff 8 [ UF(.rf 2rf 8./a), one can define the dimensionless dispersion
relation of the local field from

^(Dsz
f)2& 5 U 2B2( p) (24)

where

B( p) [
F(0)
2p

(1 2 m2)1/2[G( p) 2 1]1/2 (25)

For systems with a short-range interaction, the zero-Fourier component is
F(0) 5 z, where z is the number of the nearest spins involved in the interaction.

Taking into account (24) and (25), we see that the expression for the
energy V has the form

V( p) 5 F1v0 1
UF(0)m

2 2
2

1 U 2B2( p)G1/2

(26)

Equation (10b) represents the self-consistent equation and defines the so-
called temperature function T( p). It can also be presented in the form

p
U(0)

5
1

2V( p)
tanh1V( p)

2T 2 (27a)
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or

T( p) 5
1
2

V( p)
tanh21(2pV( p)/U(0))

(27b)

For completeness, we derive the expressions for the mean energy and
the partition function. From (1) it follows that

^H & 5 2o
f

^Sz
f sz

f& 5 2N^Sz
f sz

f& (28a)

Putting A 5 sz
f in the DLRE (10a) and using the approximation (4) and the

self-consistent equation (27a), we finally get

2
^H &
N

5
V
2

tanh1V
2T2 5

p
U(0)

V2( p) (28b)

which is the expression for the mean energy as a function of the parameter p.
The expression for the partition function is obtained, within the frame-

work of approximation (7), from

cosh(asz
f) 5 cosh(aV) (29)

Thus, we have

Q 5 p
f

o
s561/2

exp(bSz
f sz

f) 5 p
f
F2 cosh1sz

f

2T2G 5 F2 cosh1V
2T2GN

(30)

From this it is easy to obtain the expressions for the free and the mean energy,
respectively: F 5 2T ln Q, ^H & 5 2 ln Q/b. The last expression for the
mean energy reproduces (28b), obtained above from the DLRE.

We also give the explicit expression for the spontaneous magnetization
by putting p 5 1 in (27a):

1
UF(0)

5
1

2V(1)
tanhFV(1)

2T G (31)

Here

V(1) [
UF(0)

2
[m2 1 (G(1) 2 1)(1 2 m2)]1/2 (32)

If one puts m 5 0 in (32), one will obtain the expression for the critical
temperature Tc:

4Tc

UF(0)
5

[G(1) 2 1]1/2

tanh21[G(1) 2 1]1/2 (33)

In short, then, Eqs. (19), (20), (24), and (26)–(33) form a closed system
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of equations and define completely the thermodynamics of the spin-1/2 Ising
model for a regular lattice of an arbitrary integral dimension; these equations
are related to each other through an arbitrary interaction. If in (26) we neglect
the quadratic fluctuations, ^(Dsz

f)2& 5 0, we recover the mean-field approxi-
mation. If, on the other hand, we put Uff8 5 0, the problem reduces to the
trivial statistical problem of noninteracting spins.

It is necessary to stress the fact that approximation (4) embraces the
molecular field fluctuations of higher orders. The nth-order fluctuations are
given by

(sz
f)2n 5 ^(sz

f)2&n

(34)
(sz

f)2n11 5 sz
f ^(sz

f)2&n

The main difference of the SFA from exact solutions is that, in the SFA,
the exact value of the mean field is determined by finite or (in general)
infinite numbers of fluctuations leading finally to the nonlinear DLRE. Since
the analytical methods of solving nonlinear difference equations are not yet
fully known, the DLREs are approximately linearized and the problem of
nonlinearity is carried over to the self-consistent equations [in the present
case, Eq. (10b) for the value of h or p].

It is worth remarking here that the rather involved method of temporal
Green functions has been deliberately avoided (Zubarev, 1960); in any case,
the direct, simple computations of the correlation functions in the Heisenberg
representation, together with (9), give the same result.

Before giving our results for complex cases, it is useful to compare the
approximate and exact results for one and two dimensions.

3. THE ONE-DIMENSIONAL ISING MODEL IN THE SFA:
COMPARISON WITH EXACT SOLUTIONS

For the one-dimensional Ising model with short-range interaction, the
lattice Green function (23) can easily be calculated:

G( p) 5
1
N o

k

1
1 2 pU(k)/U(0)

5
1

2p #
1p

2p

dw
1 2 p cos w

5
1

!1 2 p2
(35)

Clearly, G( p) goes to infinity at p 5 1. On the other hand, thanks to the
boundedness of the function V( p) at any p, there should exist a limiting
value pL , 1 for which Eqs. (18b), (27a) make sense. It is easy to see that
pL is determined from the condition (v0 5 0, m 5 0, z 5 2)

2pLV( pL)
U(0)

5 1 or G( pL) 5 2 (36)

We have pL 5 !3/2 5 0.866025 . . .
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We can therefore conclude that in the one-dimensional Ising model a
phase transition for periodic boundary conditions does not exist. This conclu-
sion is in agreement with the exact solutions (Jelifonov, 1971). It is interesting
to unmask the reasons for the appearance of the singularity in the lattice
Green function at p 5 1. We shall presently show that this singularity is
intimately related to the use of cyclic boundary conditions (the Born–von
Karman periodic boundary conditions); we have already shown that, thanks
to these cyclic conditions, we get the closed solution for the pair correlation
function in the form (18b).

Let us find the solution of (15) without using Fourier transforms. We
introduce the notation

^DSz
f DSz

f 8&c [ K( j ) (37)

where f 2 f 8 [ j. Then, for the short-range potential (z 5 2), Eq. (15) can
be written in the form of the difference equation

p
2

[K( j 1 1) 1 K( j 2 1)] 2 K( j ) 5 0 (38)

where p [ 2hU. The solution of (38) reads

K( j ) 5 C1lj
1 1 C2lj

2 (39a)

Here

l6 [
1 6 !1 2 p2

p
(39b)

are the roots of the characteristic equation

l2 2
2
p

l 1 1 5 0 (40)

For the infinite chain the pair correlations should decrease with the growth
of j; the solution for the infinite chain can then be written as

K( j ) 5 ^(DSz)2& lj
2 (41)

Expression (41) correctly describes the correlations near the critical
“point”; these attain their maximum value ^(DSz)2 at p 5 1 and remain
constant. Based on this result, we can readily calculate V2( p) at v0 5 0,
m 5 0:

V2( p) 5 ^(Dsz
f)2& 5 U 2^(DSz

f11 1 DSz
f21)2& 5 2U 2(K(0) 1 K(2))

5
U 2

2
(1 1 l2

2) 5
U 2

1 1 !1 2 p2
(42)
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The value 2pV( p)/2U at the critical point p 5 1 is finite and, by virtue of
(42), equals unity. As follows from (27a), this value corresponds to the critical
temperature Tc 5 0.

Thus, one can conclude that the appearance of the singularity is associ-
ated with cyclic boundary conditions, but no phase transition occurs in the
one-dimensional infinite chain. All these conclusions equally apply for the
exact solution with short-range interactions. It is easy to show that the exact
DLRE (Jelifonov, 1971) for the one-dimensional model can be given in a
form rather similar to (10a):

^Sz
f A& 5 hexU^(Sz

f11 1 Sz
f21)A& (43)

where

hexU 5
tanh(bU/2)

2[cosh2(bv0/2) 1 sinh2(bv0/2) tanh(bU/2)]
(44)

Further investigation of the approximate DLRE (10a) for dE 5 1 can
be realized in complete analogy with the exact DLRE of the type (43). We
omit here the details. We only remark that excellent agreement is obtained
with the exact solutions. Figure 1a gives a plot of the two functions hU 5
p [Eq. (38)] and hex U 5 pex [Eq. (44)] versus the ‘reduced’ temperature T/
U. As was shown by Jelifonov (1971), these functions play a dominant role
in calculating the main thermodynamic characteristics of the Ising model
with dE 5 1. It is clear from Fig. 1b that the relative error is d [ (.p 2 pex./
pex) ? 100% # 9.3%, which inspires confidence in the SFA. The dependence
of the local field fluctuations B on T/U is shown in Fig. 2.

4. THE TWO-DIMENSIONAL ISING MODEL IN THE SFA:
THERMODYNAMIC PROPERTIES OF AN INFINITE
PLANE

For the two-dimensional Ising model with a short-range (nearest neigh-
bor interaction) the exact expression for the Green function has the form
(Morita and Horiguchi, 1971; Oitmaa, 1971)

G( p) 5
1
N o

k

1
1 2 pU(k)/U(0)

5
1

(2p)2 #
1p

2p
#

1p

2p

dw1dw2

1 2 p(cos w1 1 cos w2)/2
[

2
p

K( p) (45)

Here K( p) is a complete elliptic integral of the first type:
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Fig. 1. (a) Direct comparison of the parameters p 5 2hU (upper curve) [entering into the
approximate DLRE (38)] and pex 5 2hexU [Eq. (44)] at v0 5 0 (lower curve) versus the
reduced temperature T/U. Visually these curves are almost fused with each other. (b) To see
the difference we calculated the value of the relative error d [ (.p 2 pex./pex) ? 100% as a
function of the temperature (v0 5 0). The value of this error is #9.3%.
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Fig. 2. The dependence of the local field fluctuations B versus T/U for the one-dimensional
Ising model. The maximum value B(T ) 5 1 occurs at zero temperature. The limiting value at
infinite temperature is B(`) 5 1/!2 5 0.707.

K( p) [ #
p/2

0

(1 2 p2 sin2u)21/2 du (46)

From (46) it follows that, as p → 1, the function K( p) has a logarithmic
divergence ,ln[1/(1 2 p)]. However, from a condition analogous to (36), it
follows that the lattice Green function should be finite. In fact, the limiting
value for dE 5 2 is also found from (36):

G( pL) 5 2 or K( pL) 5 p (47)

The solution of the last transcendental equation gives the value pL 5
0.9844606 . . . , which slightly differs from unity. If for the critical region
we require the fulfilment of the stringent constraint p 5 1, we should conclude
that within the framework of the SFA the incorporation of only quadratic
fluctuations for cyclic boundary conditions is not sufficient to yield the phase
transition for the spontaneous magnetization. Preliminary investigations of
the influence of higher order fluctuations on the phase transition for the two-
dimensional case with periodic boundary conditions clearly show that the
consideration of third-order fluctuations of the local field is sufficient for
restoring the phase transition in this case. The results obtained are very close
to Onsager’s results. The complete investigation of the influence of the higher
order fluctuations of the local field on the phase-transition phenomenon will
be the subject of a subsequent publication.
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In fact, the exact DLRE for the two-dimensional Ising model reads

^Sz
fA& 5 t0^A& 1 t1^Sf A& 1 t2^S2

f A& 1 t3^S3
f A& 1 t4^S4

f A& (48)

where

Sf [ Sz
m11,n 1 Sz

m21,n 1 Sz
m,n11 1 Sz

m,n21 (49)

Sf is the sum of spins interacting with spin Sz
f [ Sz

m,n. The parameters ti in
(48) are given by

t0 5
1
2

t0 (50a)

t1 5
1
3

(t+ 2 t2) 2
1
24

(t12 2 t22) (50b)

t2 5
1
3

(t+ 1 t2) 2
1
48

(t12 1 t22) 2
5
8

t0 (50c)

t3 5 2
1
12

(t+ 2 t2) 1
1
24

(t12 2 t22) (50d)

t4 5 2
1
12

(t+ 1 t2) 1
1
48

(t12 1 t22) 1
1
8

t0 (50e)

where

t0 [ tanh 1bv0

2 2; t6 [ tanh Fb
2

(v0 6 U )G;

t62 [ tanh Fb
2

(v0 6 2U )G
For the two-dimensional case the exact DLREs are nonlinear; all attempts

to obtain exact solutions based on (48) have so far been ineffective. The
SFA, it should be emphasized, has arisen, as a new method of solution
in the many-body problem and statistical mechanics, from the idea of the
replacement of the nonlinear, exact DLRE of type (48) with the linearized,
approximate, and self-consistent DLRE of type (14). This linearized DLRE
allows one to also consider boundary conditions other than cyclic.

To this end, let us examine the DLRE for an infinite plane.
We have already seen that, for cyclic boundary conditions, the consider-

ation of only the quadratic fluctuations of the molecular field is not sufficient
for the realization of phase-transition conditions in the Ising system.

In view of this, it is interesting to pose the following problem: Are there
any boundary conditions, other than cyclic, where quadratic fluctuations of
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the molecular field are sufficient for the realization of the phase-transition
phenomenon?

To answer this question, we should find the solution of the DLRE of
type (15) without using the Fourier transform in the k-representation. We
assume that the set of spins is located in an infinite plane and that they
interact only with nearest neighbors. For this case, introducing the transla-
tionally invariant correlation function

^DSz
f DSz

f 8& 5 K(m, n) (51)

where (x 2 x8)/a [ m and ( y 2 y8)/a [ n, with a being the lattice constant,
we can write down the DLRE (15) in the form

K(m, n) 5 hU[K(m 1 1, n) 1 K(m 2 1, n) 1 K(m, n 1 1)

1 K(m, n 2 1)] (52)

For an infinite plane, taking into account the rotational symmetry as well,
we look for a particular solution of K(m, n) in the form

K(m, n) 5 K(0, 0)l.m.1.n., .l. # 1 (53)

Usually this form of solution for two-dimensional difference equations is
ineffective because the conditions for finding the value l are unknown. In
our case, however, these additional conditions do exist and an equation for
l is found for the nearest neighbor correlation functions. Let us write the
DLRE for K(0, 1):

K(0, 1) 5
p
4

[K(1, 1) 1 K(21, 1) 1 K(0, 2) 1 K(0, 0)] (54)

Here, as before, the parameter p is determined from the condition hU(0) 5
4hU 5 p. Substituting the particular solution (53) into (54), we get the
desired equation for l:

l 5
p
4

(3l2 1 1) (55)

or

l6( p) 5
2
3p

6
!4 2 3p2

3p
(56)

Since .p. # 1, the root l+( p) should be rejected [.l+( p). . 1] except
for the critical point, where l+(1) 5 1. Thus, the solution for the pair correla-
tion function can be written in the form
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K(m, n) 5 5
K(0, 0)[l2( p)].m.1.n.

C1 1 C211
32

.m.1.n.

; C1 1 C2 5 K(0, 0) (57)

On the other hand, at the critical point p 5 1, the correlation function should
be a decreasing and a single-valued function. It follows that C1 5 0, and the
pair correlation function for all p is determined by the expression

K(m, n) 5 K(0, 0)(l2( p)).m.1.n. (58)

Based on (58), one can derive the full thermodynamics of this system.
Consider first the case (T $ Tc , v0 5 0, m 5 0): The critical dispersion

B(1) and the temperature Tc are found from the conditions

B(1) 5 ^(Sz
1,0 1 Sz

21,0 1 Sz
0,1 1 Sz

0,21)2&1/2

5 [4K(0, 0) 1 2K(2, 0) 1 2K(0, 2) 1 8K(1, 1)]1/2

5 2–3 !3 5 1.1547. . . (59a)

4Xc [
4Tc

U
5

2B(1)
tanh21[B(1)/2]

5 3.507175. . . (59b)

The normalized temperature t( p) is defined by

t( p) [
X( p)

Xc
2 1 (60)

where

X( p) [
B( p)

2 tanh21[pB( p)/2]
; B( p) [ !3[l2( p)]2 1 1

l2( p) is given by (56).
Let us find the decomposition of t( p) near the critical point p 5 1. In

terms of ε [ (1 2 p)1/2,

t(ε) 5 u.
1 ε2 1 u.

2 ε4 1 O(ε6) (61)

u.
1 5 1.4728, u.

2 5 0.33492. Inverting this, we find the inverse
decomposition:

ε(t) 5 d.
1 t1/2 2 d.

2 t3/2 1 O(t2) (62)

d.
1 5 0.824002, d.

2 5 0.0636138. To find the behavior of the specific heat
to the right of the critical point, we first find the decomposition for the
average energy:
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^H &
N

5 2
pB2( p)

4
U 5 U[2g2

0 1 e.
1 ε2 2 e.

2 ε4 1 O(ε6)] (63)

g2
0 5 1/3, e.

1 5 2/3, e.
2 5 4/3. Using (62), we finally get the decomposition

for the mean energy as a function of t:

^H &
N

5 U[2g2
0 1 k.

1 t 2 k.
2 t2 1 O(t3)] (64)

k.
1 5 0.4526, k.

2 5 0.6846. From the last expression, by differentiation, we
find the specific heat decomposition to the right of Tc:

1
U

CH

N
5

1
UN 1d^H &

dT 2 5
1

UXc

d
dt 1^H &

N 2 5 D. 2 D.t (65)

D. 5 0.516256, D. 5 1.51653. From this result it follows that the critical
exponent for the specific heat is a8 5 0.

Let us now find the behavior of the specific heat to the left of the critical
point (T # Tc , m Þ 0). We define the reduced temperature for this region as

t [ 1 2
X(m)

Xc
5 1 2

Z(m)
Xc tanh21[Z(m)]

(66)

where

Z(m) [ V(m)/(2U ) 5 {m2 1 (1 2 m2)[B(1)/2]2}1/2

It is then convenient to determine the inverse relation m [ m(Z ) and define
a new variable j by the relation

m(Z ) 5 FZ 2 2 [B(1)/2]2

1 2 [B(1)/2]2 G1/2

5
j1/2

{1 2 [B(1)/2]2}1/2 (67)

From this last expression the decomposition of t(j) follows:

t 5 1 2
!j 1 [B(1)/2]2

Xc tanh21!j 1 [B(1)/2]2}
5 u,

1 j 1 u,
2 j2 1 O(j3) (68)

u,
1 5 0.472786, u,

2 5 0.192294. Inverting (68), we find the decomposition
for j(t):

j 5 w,
1 t 2 w,

2 t2 1 w,
3 t3 1 O(t4) (69)

w,
1 5 2.11512, w,

2 5 1.81958, w,
3 5 0.0779139. Putting (69) into (67), we

find the desired decomposition for the magnetization as a function of t:

m(t) 5 m1t1/2 2 m2t3/2 2 m3t5/2 1 O(t7/2) (70)

m1 5 1.7812, m2 5 0.76616, m3 5 0.13197. Having obtained decompositions
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(69) and (70), one can find the corresponding decompositions for the
mean energy:

^H &
N

5 U[2g2
0 2 k,

1 t 1 k,
2 t2 1 O(t3)] (71)

k,
1 5 2.11512, k,

2 5 1.01950. By differentiation, we finally obtain the
decomposition for the specific heat to the left of the critical point:

1
U

CH

N
5

1
UN 1d^H &

dT 2 5
1

UXc

d
dt 1^H &

N 2 5 D, 2 D,t (72)

D, 5 2.41231, D, 5 4.15054.
It follows that the specific heat has a finite jump D [ D, 2 D. that

gives the critical exponent a 5 0. It is crucial to note that this finite jump
is intimately related to the breakdown of the nearest order correlation function
at the critical point. This relation will be delineated in detail for the three-
dimensional case.

From the solution of the transcendental equation

1
2U

5
1

V(m, v0)
tanhFV(m,v0)

2Tc
G (73)

where V(m, v0) [ [(v0 1 2Um)2 1 (2U )2 (1 2 m2)B2(1)]1/2, one can find
m 5 m(h) [h [ v0/2U ] at the critical point T 5 Tc. The critical exponent
d 5 3 can be determined from the Griffith relation (Stanley, 1971) a8 1
b(1 1 d) 5 2. Plots illustrating the thermodynamics of the Ising infinite
plane are given in Figs. 3–7.

5. THE THREE-DIMENSIONAL ISING MODEL: THE EFFECTS
OF BOUNDARY CONDITIONS

In contrast to the one- and two-dimensional cases, no exact solution exists
for the three-dimensional case, as is well known. With various approximate
methods, however, it is possible to obtain some important and reliable results.
The main techniques of solving for the Ising model in three dimensions are
the low- and high-temperature decompositions of thermodynamic values, the
Padé-approximant method, and various modifications of the mean-field
theory.

In all these methods the effects of boundary conditions have not been
considered; the problem has been approximately solved only with periodic
boundary conditions. In the framework of the SFA method, however, it is
possible to consider other boundary conditions.
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Fig. 3. The dimensionless local field dispersion B(T ) versus the normalized temperature T/Tc

for an infinite plane. At the critical point, B(T ) 5 2/!3. The limiting value at high temperatures
equals unity: B(`) 5 1.

Fig. 4. The spontaneous magnetization versus the normalized temperature T/Tc. The critical
exponent to the left of the critical point is b 5 1/2, which agrees with the prediction of mean-
field theory.
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Fig. 5. The behavior of the nearest order correlation functions as a function of the normalized
temperature T/Tc.

Fig. 6. The specific heat for an infinite plane as a function of the normalized temperature
T/Tc. Note the finite jump at the critical point.
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Fig. 7. The magnetization versus the magnetic field h [ v0/2U at the critical point T 5 Tc.
The critical exponent can be determined from the Griffith relation (Stanley, 1971) and is d 5 3.

As for the one-dimensional (Jelifonov, 1971) and two-dimensional cases
considered above, the change of boundary conditions can lead to a consider-
able modification of the phase-transition scenario in the three-dimensional
case. To avoid misunderstanding concerning this point, we emphasize that
the term ‘boundary conditions’ is used here in a strict mathematical sense;
the present work can be regarded as a generalization of the previous one-
dimensional study (Jelifonov, 1971), where it was stressed that the change
of boundary conditions affects the critical behavior of the system.

Before considering this problem, we give the complete thermodynamics
of the three-dimensional model in the SFA method with periodic boundary
conditions and compare the results to the data obtained by conventional
methods.

5.1. The Cyclic Boundary Conditions

We consider the system of spins to be localized at the nodes of a Bravais
lattice. These spins interact with each other via an attractive short-range
potential. The lattice Green function in this case can be written in the form

GL( p) 5
1
N o

k
{1 2 p[UL(k)/UL(0)]}21

5
1

(2p)3 #
p

2p

dw1 #
p

2p

dw2 #
p

2p

dw3 {1 2 p[UL(w1, w2, w3)/UL(0)]}21 (74)



426 Nigmatullin, Khamzin, and Ghassib

where the Fourier components of the potential depend on the type of cubic
lattice. The explicit expressions are given by

UL(w1, w2, w3)/UL(0)

5 (cos w1 1 cos w2 1 cos w3)/3, L [ SC

UL(w1, w2, w3)/UL(0)
(75)

5 (cos w1 cos w2 1 cos w1 cosw3 1 cos w2 cos w3)/3, L [ FCC

UL(w1, w2, w3)/UL(0)

5 cos w1 cos w2 cos w3, L [ BCC

For the three-dimensional case the lattice Green function does not have
singularities at the critical point (Morita and Horiguchi, 1971; Oitmaa, 1971).
Based on these results, we can directly use Eqs. (18)–(33) for cyclic bound-
ary conditions.

We find the critical temperature Tc from (27b) at p 5 1, where the lattice
Green functions have a branching point (Morita and Horiguchi, 1971). It
conforms with the usual definition of Tc because, at p 5 1, the magnetization
becomes zero. From (27b), we obtain the following expression for the dimen-
sionless ratio Tc /U:

Xc [
4Tc

U
5

z[GL(1) 2 1]
tanh21[GL(1) 2 1]

(76)

Here GL(1) is the Watson integral. The values of Tc /U calculated from (76),
together with the corresponding results obtained from other methods, are
given in Table I. The values of GL(1) for the principal types of cubic lattices
are also given in this table.

The dependence of the dimensionless local field dispersion B( p) on the
reduced temperature in the whole temperature region can be obtained from
the following system of equations:

For T . Tc:

B( p) 5
z

2p
[GL( p) 2 1]1/2 (77a)

X( p) 5
4T
U

5
2B( p)

tanh21[2pB( p)/z]
(77b)
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Table I. The Critical Temperature Tc /U for the Three-Dimensional Ising Model, Obtained
by Various Methodsa

SC BCC FCC
lattice lattice lattice

Method (z 5 6) (z 5 8) (z 5 12)

Weiss mean field (Smart, 1966) 6.0 8.0 12.0
Oguchi’s method (Smart, 1966) 5.7194 7.7819 11.8487
P. R. Weiss (Honmura and Kaneyoshi, 1979) 5.5866 7.5692 11.5495
Green functions (Smart, 1966) 5.3 7.36 ?
Effective field (n 5 0; n 5 z) (Honmura and

Kaneyoshi, 1979) 5.0733 7.0633 11.0446
4.9326 6.9521 10.9696

Zhang and Min (1981) 4.890 6.914 10.651
Taggart and Fittipaldi (1982) 4.632 6.560 10.284
Frank and Mitran (1977) 4.530 6.392 9.828
RPA (Smart, 1966) 3.96 5.74 ?
High-temperature decomposition (Smart,

1966) 3.7760 5.2865 8.3073
Constant-bond approximation (Kasteleijn

and Van Kranendonk, 1956) 3.6410 5.7708 9.8652
SFA (this work) 4.7655 6.8107 10.4649
GL(1) 1.51638 1.393204 1.34466
BL(1) 2.1558 2.5082 3.5225
BL(`) 1.2247 1.4142 1.73205

a The values of GL(1) and of the dimensionless local field dispersion at the critical point B(1)
and at high temperatures B(`) are also given.

For T , Tc:

B(m) 5
z
2

(1 2 m2)1/2 [GL (1) 2 1]1/2 (77c)

X(m) 5
4T
U

5
2V(m)

U tanh21[2V(m)/Uz]
(77d)

V(m) 5
zU
2

{m2 1 (1 2 m2)[GL (1) 2 1]}1/2 (77e)

Analytical expressions of Green functions defined by (74) are given by
Morita and Horiguchi (1971) and by Oitmaa (1971). The corresponding plots
of B(T/Tc) are given in Fig. 8.

To find the temperature dependence of the nearest order correlation
functions, 4^Sz

f Sz
f1d&, we put A 5 sz

f in DLRE (10a). With (28), we find
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Fig. 8. The dependence of the dimensionless local field dispersion on the normalized tempera-
ture T/Tc. The numerical values of BL(T/Tc) and BL(`) are given in Table I.

zU^Sz
f Sz

f1d& 5
pV2( p)

U(0)
(78a)

More explicitly, we have the following results.

For T . Tc:

4^Sz
f Sz

f1d& 5 4
pB2( p)

z2 (78b)

For T , Tc:

4^Sz
f Sz

f1d& 5 12V(m)
zU 2

2

(78c)

Equations (78), together with (77), define the temperature dependence
of the nearest order correlators on the normalized temperature T/Tc. The
corresponding plots for the three principal types of cubic lattices are given
in Fig. 9. From this figure it is shown that the nearest order correlator has
a monotonic behavior near the critical point. It means that the specific heat
does not have a jump at the transition point; the SFA with periodic boundary
conditions predicts a phase transition of the first kind. This conclusion differs
from the Weiss theory and its modifications, which predict a phase transition
of the second kind; the correlation function of the nearest order has a kink
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Fig. 9. The correlators of the nearest order 4^Sz
jSz

j1d& as functions of the normalized temperature
T/Tc.

at the critical point that leads, in turn, to the jump of the specific heat at Tc.
The comparative plots of the nearest order correlators obtained by various
methods for a simple cubic lattice (SC) are given in Fig. 10. The values of
the correlators at Tc for z 5 6 are listed in Table II.

It is convenient to define the pair correlation function of any order for
an arbitrary potential Uff8 [ UF(.rf 2 rf 8./a) in the SFA by the expression

K( f 2 f 8) 5 4^DSz
f DSz

f 8& 5 4
^(DSz)2&

N o
k

exp(ikrff 8)

1 2 pU(k)/U(0)
(79)

Here U(k) is the Fourier transform of the potential. It follows that the pair
correlation function contains the Fourier transform of the Green function. It
is impossible to obtain an analytical expression of this transform for an
arbitrary potential; in general, therefore, it is estimated numerically (Morita
and Horiguchi, 1971; Oitmaa, 1971). As an example, we give in Fig. 11 the
plots of the correlation functions 4^DSz

000 DSz
100&, 4^DSz

000 DSz
110&, and

4^DSz
000 DSz

200& for the SC lattice.
Equations (77c)–(77e) allow one to find the temperature dependence of

the spontaneous magnetization. This quantity can be expressed in the follow-
ing parametric form:
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Fig. 10. The correlation functions of the nearest order 4^Sz
jSz

j1d& as functions of the normalized
temperature T/Tc , calculated by various methods. (1) Oguchi’s method (Honmura and Kaneyoshi,
1979; Smart, 1966), (2) the constant-bond method (Kasteleijn and Van Kranendonk, 1956); (3)
P. R. Weiss approximation (Honmura and Kaneyoshi, 1979; Smart, 1966); (4) effective-field
approximation (Honmura and Kaneyoshi, 1979; Smart, 1966) at n 5 0.

m(Z ) 5 1Z 2 2 [GL(1) 2 1]
1 2 [GL(1) 2 1] 2

1/2

(80a)

X(m) 5
zy

4 tanh21 [Z(m)]
(80b)

where Z(m) 5 2V(m)/zU, 0 # Z 2(m) # GL(1) 2 1. The plot of the spontaneous
magnetization versus temperature for the FCC lattice is shown in Fig. 12.

Table II. Values of the Nearest Order Correlators at the Critical Point, Obtained by
Various Methods (z 5 6)

Effective-field
Constant-bond method
approximation (n 5 0) P. R. Weiss Mean-field

Oguchi’s (Kasteleijn and (Honmura and approximation theory
method Van Kaneyoshi, (Honmura and (Honmura and
(Smart, Kranendonk, 1979; Kaneyoshi, 1979; Kaneyoshi, 1979;

SFA 1966) 1956) Smart, 1966) Smart, 1966) Smart, 1966)

0.5164 0.4316 0.2000 0.1667 0.1552 0.0
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Fig. 11. The dependence of the pair correlation functions for an SC lattice (z 5 6) on the
normalized temperature T/Tc. The values of these correlators at the critical point are, respectively,
4^DSz

000 DSz
100&c 5 0.516, 4^DSz

000 DSz
110&c 5 0.331, and 4^DSz

000 DSz
200&c 5 0.257.

Fig. 12. The dependence of the spontaneous magnetization for an FCC lattice on the normalized
temperature T/Tc.
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For SC and BCC lattices the plots look almost the same, so they are not
given here.

In the framework of the SFA [see (13)], it is possible to find the depen-
dence of the magnetization on the external magnetic field:

m 5
2pv0

(1 2 p)zU
(81)

the parameter p being itself a function of v0. The functional dependence of
p(v0) can be recovered from the following system of equations:

V( p) 5 H1v0 1
Uzm

2 2
2

1 [UB( p)]2J1/2

(82a)

B( p) 5
z

2p
(1 2 m2)[GL( p) 2 1]1/2 (82b)

p 5
Uz

2V( p)
tanh1V( p)

2T 2 (82c)

This, in turn, reduces to the following self-consistent equation:

pF1m( p, v0) 1
2v0

Uz 2
2

1
1 2 m2( p, v0)

p2 [GL( p 2 1]G1/2

5 tanh
z[[m( p, v0) 1 2v0/Uz]2 1 {[1 2 m2( p, v0)]/p2}[GL( p) 2 1]]1/2

X
(83)

where m( p, v0) is defined by (81), and X 5 4T/U. A plot of m(2v0/Uz) for
an FCC lattice is given in Fig. 13.

The specific heat is found from the defining expression

GH 5
1
N

^H &
T

(84)

the mean energy being

1
N

^H & 5 2 ^Sz
fsz

f& 5 2zU^Sz
f Sz

f1d& 5 2
pV2( p)

zU
(85)

The plot of the specific heat versus the normalized temperature T/Tc for z 5
8 (a BCC lattice) is shown in Fig. 14. In Fig. 15 we also give, for comparison,
the set of plots of specific heats for z 5 6 (SC) obtained by other methods.
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Fig. 13. The dependence of the magnetization for an FCC lattice (z 5 12) on the reduced
external magnetic field h [ 2v0/Uz.

Fig. 14. The specific heat dependence on the dimensionless temperature for a BCC lattice
(z 5 8) with periodic boundary conditions.
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Fig. 15. The dependence of CH(T/Tc) on the normalized temperature T/Tc for z 5 6 (periodic
boundary conditions): (1) Oguchi’s method (Honmura and Kaneyoshi, 1979; Smart, 1966); (2)
the constant-bond method (Kasteleijn and Van Kranendonk, 1956); (3) P. R. Weiss approximation
(Honmura and Kaneyoshi, 1979; Smart, 1966); (4) effective-field approximation (Honmura
and Kaneyoshi, 1979; Smart, 1966) at n 5 0.

It should be noted that the experimental data for CH(T ) cannot give a
categorical answer to the question: Does the jump shown imply a critical
point; or does CH simply decrease rapidly for T . Tc?

For simple cubic lattices the behavior of the lattice Green functions has
been investigated in the vicinity of the branching point p 5 1 for dE 5 3
(Mannari and Kogeyama, 1968; Morita and Horiguchi, 1971); it has the form

GL( p) 5 GL(1) 2 g1Lε 2 g2Lε2 1 g3Lε3 1 . . . (86)

The constants giL depend on the lattice (L [ SC, BCC, FCC) and are given
by Mannari and Kogeyama (1968); ε [ (1 2 p)1/2. The decomposition (86)
allows one to clarify the behavior of the main thermodynamic values in the
vicinity of the critical point and to find the critical exponents a, a8 for the
specific heat as well as b for the magnetization:

A. Case T . Tc (m 5 0): Defining the parameter t( p) [ X( p)/Xc 2 1,
where X( p), Xc are defined by (76), (77a), respectively, one can show that
the decomposition t( p) near Xc has the form

t > q.
1L ε 1 q.

2L ε2 1 q.
3L ε3 1 O(ε4) (87)

The positive constants q.
iL (i 5 1, 2, 3) have been calculated for all three
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main cubic lattices and are shown in Table III. In the same manner one can
find the decomposition coefficients g2

0L and eiL (i 5 1, 2, 3) for the mean
energy (Table III):

1
N

^H & > Uz
4

[2g2
0L 1 e.

1L ε 2 e.
2L ε2 1 e.

3L ε3 1 O(ε4)] (88)

Inverting decomposition (87), we obtain

Table III. Decomposition Coefficients of Thermodynamic Values for the Three-
Dimensional Ising Model (Periodic Boundary Conditions)

Decomposition SC BCC FCC
coefficients lattice lattice lattice

g1L 1.1695 0.9003 0.8270
g2L 1.0705 0.8421 0.7995
g3L 0.8772 0.6763 0.6206
u.

1L 0.7274 0.4614 0.3968
u.

2L 0.1549 0.3820 0.4805
u.

3L 2.7899 1.3033 1.0480
g2

0L 0.5164 0.3932 0.3447
e.

1L 1.1695 0.9003 0.8270
e.

2L 1.5949 1.2353 1.1442
e.

3L 2.0467 1.5767 1.4476
d.

1L 1.3747 2.1674 2.5203
d.

2L 0.4025 23.0097 27.6928
d.

3L 29.7293 214.7906 4.6806
k.

1L 1.6078 1.9513 2.0843
k.

2L 2.5434 9.3049 13.6295
k.

3L 7.8260 23.5582 71.4122
D.

L 2.0243 2.2921 2.3900
D.

1L 6.4046 21.8595 31.2576
u,

1L 0.6220 0.5125 0.4798
u,

2L 0.3539 0.2300 0.1987
u,

3L 0.3901 0.2009 0.1604
11L 1.6078 1.9513 2.0843
12L 1.4711 1.7087 1.7988
13L 0.0852 0.0801 0.0783
a1L 1.8233 1.7933 1.7834
a2L 0.8342 0.7851 0.7696
a3L 0.1424 0.1351 0.1325
k,

1L 1.6078 1.9513 2.0843
k,

2L 1.4711 1.7087 1.7988
k,

3L 0.0852 0.0801 0.0783
D,

L 2.0243 2.2921 2.3901
D,

1L 3.7044 4.0141 4.1253
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ε > d1L t 1 d2L t2 1 d3L t3 1 O(t4) (89)

where the positive parameters diL are listed in Table III. Putting this into
(88), we find the decomposition of the mean energy and the nearest order
correlators as functions of the parameter t:

1
N

^H & > Uz
4

(2g2
0L 1 k.

1Lt 2 k.
2Lt2 2 k.

3Lt3 1 . . .) (90)

where the decomposition coefficients k.
iL are again given in Table III. From

the last decomposition it is easy to find the specific heat behavior at small t:

Cv > D.
L 2 D.

1Lt (91)

Numerical values of D.
L , K.

1L are given for all three types of cubic lattices in
Table III. From (91) it follows that, in the SFA framework, the critical
exponent a to the right of the critical point equals zero exactly. The high-
temperature decomposition leads to the value a 5 0.125 6 0.015; see, for
example, Potashinsky and Pokrovsky (1975).

B. Case T # Tc: For this temperature region we define in a similar
manner the parameter t [ 1 2 X(m)/Xc , X(m) being given by expression
(77d). From (80) one can see that, near the critical point, the value

j [ Z(m)2 2 [GL(1) 2 1] (92)

is a small parameter; therefore it is possible to find the decomposition t(j):

t > q,
1Lj 1 q,

2Lj2 1 q,
3Lj3 1 O(j4) (93)

The coefficients q,
iL (I 5 1, 2, 3) are shown in Table III. Inverting (93),

we find

j > 11Lt 2 12Lt2 1 13Lt3 1 O(t4) (94)

where the calculated values 1iL are again listed in Table III. Putting (94) into
the expression for m2 [see (80)],

m2 5
j

2 2 GL(1)
(95)

we obtain the decomposition for the spontaneous magnetization:

mL > a1Lt1/2 2 a2Lt3/2 2 a3Lt5/2 1 O(t7/2) (96)

Here we have explicitly denoted the magnetization by mL to stress the depen-
dence of the constants aiL on the lattice type for the three-dimensional case.
It follows from (96) that the SFA is not capable of improving the “classical”
values of the critical exponents; it gives b 5 1/2, which coincides with the
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result of the mean-field theory and its modifications (see, for example, Smart,
1966; Honmura and Kaneyoshi, 1979; Zhang and Min, 1981; Taggart and
Fittipaldi, 1982).

To find the behavior of the specific heat to the left of the critical point,
it is necessary to find the mean energy as a function of l. Based on the
decompositions given above, it is possible to realize this; we get

1
N

^H & 5 2
zU
4

{l 1 [GL(1) 2 1]} (97)

which gives the desired decomposition:

1
N

^H & > zU
4

(2g2
0L 2 k,

1Lt 1 k,
2Lt2 2 k,

3Lt3 1 . . .) (98)

The coefficients K,
iL for the cubic lattices are also given in Table III.

It should be noted that the expressions in parentheses in (90) and (98)
themselves represent the decompositions of the nearest order correlators from
the right and the left, respectively. Comparison of the coefficients k.

1L, k,
1L

shows that the correlation functions are monotonic at the critical point; this,
in turn, gives only the kink of the specific heat at the critical point. This
conclusion follows from the comparison of the expressions for the specific
heat at T . Tc and T , Tc:

Cv > D,
L 2 K,

1Lt (99)

The coincidence of D.
L and D,

L leads to the kink of the specific heat and
predicts a phase transition of the first kind for this type of boundary conditions.
The critical exponent coincides with a8 5 0 [see (91)].

From the relations for the critical exponents given in, for example, Frank
and Mitran (1977), if the exponents a, a8, b are known, it is easy to calculate
the remaining exponents: g 5 g8 5 1, d 5 3, n 5 n8 5 2/3, h 5 1/2
[numerical calculation taken from Potashinsky and Pokrovsky (1975) give
the following results: g > 1.25 6 0.03; d 5 5.0 6 0.2; n 5 0.642 6 0.03].

5.2. The Infinite Lattice

As remarked above, in the present framework, the possibility exists
for considering boundary conditions other than the conventional periodic
boundary conditions. In particular, we shall now consider infinite cubic lattices
and show that the change of boundary conditions can modify the scenario
of the phase transition.

To this end it is necessary to get the analytical solution of the correspond-
ing DLRE; but analytical solutions of multidimensional difference equations
are not known and have not yet been considered in mathematical physics. It
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is possible, however, to suggest a method based on the concrete form of
three-dimensional difference equations. In Section 5.2.1 we shall first consider
the solution of a model based, in its turn, on the solution of multidimensional
difference equations. Next, in Section 5.2.2 we shall give for comparison
purposes the continuous approach, based on the solution of the Helmholtz
equation for the pair correlation function. Insofar as the form of the difference
equation is dictated by the geometry of the lattice, for complex lattices (BCC,
FCC) the solutions will differ by purely mathematical complications of the
corresponding expressions. For demonstration purposes, we shall limit our-
selves here to the SC lattice.

5.2.1. Discrete Approach

The equation for the pair correlation function can be given in the form
of a three-dimensional difference equation of the second order. For nearest
neighbor interactions (z 5 6), it reads

K(m, n, l) 5
p
6

[K(m 1 1, n, l) 1 K(m 2 1, n, l) 1 K(m, n 1 1, l)

1 K(m, n 2 1, l) 1 K(m, n, l 1 1) 1 K(m, n, l 2 1)] (100)

K(m, n, l) [ 4^DSz
f DSz

f 8&; f 2 f 8 [ j(m, n, l). The solution of this equation
can readily be obtained by the method of separation of variables. By analogy
with the one-dimensional case, we find as for dE 5 2 [see expression (53)]

K(m, n, l) 5 Cx.m.y.n.z.l. (101)

where x, y, z are unknown functions of p, and C is a constant.
We impose the following limitations on x, y, z:

1. .x., .y., .z. # 1 (the correlation function at infinity should go to zero).
2. K(m, n, l) for the SC lattice should be a symmetric function of the

parameters m, n, l.

To determine the unknown functions x, y, and z, (100) is written down for
the correlators of the nearest order, using the fact that the value of the
correlator K(0, 0, 0) is known:

K(1, 0, 0) 5
p
6

[K(2, 0, 0) 1 K(0, 0, 0) 1 K(1, 1, 0)

1 K(1, 21, 0) 1 K(1, 0, 1) 1 K(1, 0, 21)]

K(0, 1, 0) 5
p
6

[K(1, 1, 0) 1 K(21, 1, 0) 1 K(0, 1, 0) (102)
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1 K(0, 0, 0) 1 K(0, 1, 1) 1 K(0, 1, 21)]

K(0, 0, 1) 5
p
6

[K(1, 0, 1) 1 K(21, 0, 1) 1 K(0, 1, 1)

1 K(0, 21, 1) 1 K(0, 0, 1) 1 K(0, 0, 0)]

Substituting (101) into (102) gives the following system of equations for x,
y, z:

x 5
p
6

(x2 1 1 1 2xy 1 2xz)

y 5
p
6

(2xy 1 y 1 1 1 2yz) (103)

z 5
p
6

(2xz 1 2yz 1 z 1 1)

From (103) we obtain only one solution satisfying the two limitations
imposed above:

x 5 y 5 z 5 l 5
3 2 !9 2 5p2

5p
(104)

Thus the desired solution of (100) assumes the form

K(m, n, l) 5 K(0, 0, 0)l.m.1.n.1.l. (105)

This allows one to regain easily the dimensionless dispersion of the local
field as a function of the parameter p (T . Tc):

B( p) 5 [6K(0, 0, 0) 1 6K(2, 0, 0) 1 24K(1, 1, 0)]1/2 5 13
2

1
15
2

l22
1/2

(106)

The critical temperature is readily found from the dimensionless ratio X 5
4T/U, (77a), by putting p 5 1; for the infinite SC lattice Tc /U 5 5.5761.
This is greater than Tc /U 5 4.7655 (SC) for periodic boundary conditions.
The critical temperature serves as a measure of interaction and has a tendency
to increase with an increasing number of total spins. We therefore conclude
that the boundary conditions affect the value of the critical temperature.

The plot of the dimensionless local field dispersion for an infinite SC
lattice as a function of the normalized temperature is given in Fig. 16. In
Fig. 17 we also show the nearest order correlation function (the nearest order
parameter) as a function of the normalized temperature T/Tc.
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Fig. 16. The dependence of B(T/Tc) on the normalized temperature T/Tc for an infinite SC
lattice. B(1) 5 1.3416; B(`) 5 1.2247.

.

.

.

.

.

.
. . . . . .

Fig. 17. The dependence of the nearest order correlation function on the normalized temperature
T/Tc for an infinite SC lattice.
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As is clear from this figure, modification of the boundary conditions
leads to the kink of the nearest order parameter at the critical point, which,
in turn, can lead to a finite jump of the specific heat (see Fig. 18). Using
(106), we can easily find the dependence of the spontaneous magnetization
for an infinite SC lattice on the normalized temperature T/Tc. The correspond-
ing plot is given in Fig. 19. In Fig. 20 we give some plots of the nearest
order correlation functions versus the dimensionless temperature. In Fig. 21
we show the calculated function m(h). Based on expression (106), we are
able to investigate the region near the critical point. The procedure is the
same as before; we only point out some peculiarities of the present case:

A. T $ Tc (m 5 0):

t > q.
1`ε2 1 q.

2`ε4 1 O(ε5) (107)

1
N

^H & > Uz
4

(2g2
0` 1 e.

1`ε2 2 e.
2`ε4 1 ???) (108)

t > d.
1`t1/2 2 d.

2`t3/2 1 O(t5/2) (109)

1
N

^H & > Uz
4

(2g2.
0` 1 k.

1`t 2 k.
2`t2 1 k.

3`t3 1 ???) (110)

CH > D.
` 2 D.

1`t (111)

Fig. 18. The dependence of Cv(T/Tc) on the normalized temperature T/Tc for an infinite SC
lattice. At the critical point we see the finite jump that is associated with a phase transition of
the second kind.
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Fig. 19. The dependence of the spontaneous magnetization m(T/Tc) on the normalized tempera-
ture T/Tc for an infinite SC lattice.

Fig. 20. The dependence of the nearest order correlation functions 4^DSz
000D Sz

100&,
4^DSz

000 DSz
110&, and 4^DSz

000 DSz
111& on the normalized temperature T/Tc for an infinite SC lattice

(z 5 6). The corresponding values of these correlation functions at the critical point are 0.2,
0.04, and 0.008.



Ising Model in the SFA 443

Fig. 21. The dependence of m(h) on the magnetic field h at temperatures close to the critical
value for an infinite SC lattice (z 5 6). h [ 2v0U/z.

Clearly, from (111) we note that the change of boundary conditions does not
change the value of the critical exponent a.

B. T # Tc:

t > q,
1`j 1 q,

2`j2 1 q,
3`j3 1 O(j4) (112)

l > 11`t 2 12`t2 1 13`t3 1 O(t4) (113)

m > a1`t1/2 2 a2`t3/2 2 a3`t5/2 1 O(t3) (114)

1
N

^H & > Uz
4

(2g2
0` 1 k,

1`t 2 k,
2`t2 1 k,

3`t3 1 ???) (115)

CH > D,
` 2 D,

1`t (116)

The coefficients of these decompositions are listed in Table IV.
Thus, the change of boundary conditions does not change the values of

critical exponents; but the specific heat CH has a finite jump at the critical
point (for z 5 6, DCH 5 D,

` 2 D.
` 5 2.3967). For an infinite model, as

remarked above, we have a phase transition of the second kind—in agreement
with other methods.

5.2.2. Continuous Approach

In this subsection we demonstrate the alternative approach of investigat-
ing phase transitions in an infinite lattice. We transform the corresponding
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Table IV. Decomposition Coefficients of Thermodynamic Values for an Infinite SC
Lattice

u.
1` u.

2` d.
1` d.

2` g2
0` e.

1` e.
2` k.

1` k.
2`

1.2021 0.9407 0.9121 0.2969 0.2000 0.3000 0.2625 0.2496 0.3441
k.

3` D.
` D.

1` u,
1` u,

2` u,
3` 11` 12` 13`

0.5131 0.2685 0.7406 0.4042 0.1359 0.0896 2.4739 2.0583 0.0737
a1` a2` a3` k,

1` k,
2` k,

3` D,
` D,

1`

1.7585 0.7315 0.1260 2.4739 2.0583 0.0737 2.6620 4.4296

difference equation (100) to its continuous equivalent. Since this procedure
is conventional and is described in any text of mathematical physics, we
omit the routine calculations and write down only the final result:

DK(u, v, t) 2 x2K(u, v, t) 5 2
K(0, 0, 0)

z o
Z

ε51
d(.R 2 Rε.) (117)

Here K(u, v, t) is the pair correlation function of continuous variables u, v,
t; D is the three-dimensional Laplacian; d is the delta function; x 5 [z(1 2
p)/p]1/2, and z 5 6.

Equation (117) is the Helmholtz equation; its solution is well known
and reads

K(u, v, t) 5
K(0, 0, 0)

z o
z

ε51

exp(2x.R 2 Rε.)
.R 2 Rε.

(118)

This expression correctly describes the interspin correlations when the separa-
tion between the chosen spin and others is increased. Based on this solution,
it is easy to derive the expression for the dimensionless dispersion of the
local field for z 5 6:

B( p) 5 13
2

1
9
4

e2x 1
1
12

e23x 1
3

51/2 e251/2x 1
2

31/2 e231/2x2
1/2

(119)

Having obtained this expression, one can find the value of Tc /U 5 4.1362.
The substantial difference from the foregoing value of Tc /U 5 5.5761 can
be attributed to the transformation to continuous variables. The remaining
thermodynamic values can be calculated in complete analogy with the proce-
dures described above for an infinite SC lattice.

6. CONCLUSIONS

In this paper we have developed a remarkably powerful approach to
strongly interacting many-body systems based on an exceedingly simple
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mean-field picture, albeit modified in that the operator of quadratic fluctua-
tions is replaced with its mean value [Eq. (4)]. We have applied this approach
to the spin-1/2 n-dimensional Ising model (n 5 1, 2, 3), undertaking in the
process a novel analysis of the two-dimensional model without periodic
boundary conditions, and demonstrating the sensitivity of the phase-transition
scenario in the two- and three-dimensional cases to the boundary conditions.

The present work also goes well beyond the previous work (Nigmatullin
and Toboev, 1986, 1988, 1989). Specifically, in those papers the treatment
of the mean-field operator sz

f was inconsistent. Approximation (7) did not
allow one to derive in detail the full thermodynamics of the Ising model for
any integral dimension. In contrast, approximation (4) for sz

f , on which our
present approach is based, has allowed us to work out in meticulous detail
all the fundamental properties of the system and to obtain the DLREs for
related systems: The Ising model of antiferromagnets, the lattice gas systems,
the Ising model in the transverse field with dipole–dipole interaction, the
X–Y model, the Hubbard model, and so forth. The detailed investigation of
these systems will be the subject of subsequent publications. The next natural
step would be to generalize our treatment to the Ising model with an arbitrary
spin, type of lattice, interaction, and geometry. Other applications being
envisaged include strongly interacting Bose and Fermi systems.

It should be admitted, however, that the SFA is not capable of describing
the phase transition in the two-dimensional model with periodic boundary
conditions, thereby precluding a comparison with Onsager’s exact solution.
In addition, the SFA is clearly unable to improve the values of the critical
exponents for the magnetization and the specific heat in the limit of nearest
neighbor interaction, these values coinciding with the predictions of the mean-
field theory and its modified versions. This implies that a full description of
the phase transition presumably requires higher orders of fluctuations of the
local field operator (2). In principle, one can incorporate these orders into
the present picture by solving a nonlinear DLRE of the type (48). Unfortu-
nately, this is a mathematically complicated problem; analytical methods for
solving nonlinear DLREs have hardly been developed. The intricate problems
involved here surely constitute a major challenge for physicists and mathema-
ticians alike.
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